Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract An overview is presented of our current understanding and open questions related to magnetic reconnection in solar flares and the near-sun (within around 20$$R_{s}$$ ) solar wind. The solar-flare-related topics include the mechanisms that facilitate fast energy release and that control flare onset, electron energization, ion energization and abundance enhancement, electron and ion transport, and flare-driven heating. Recent observations and models suggesting that interchange reconnection of multipolar magnetic fields within coronal holes could provide the energy required to drive the fast solar wind are also discussed. Recentin situobservations that reconnection in the heliospheric current sheet close to the sun drives energetic ions are also presented. The implications ofin situobservations of reconnection in the Earth space environment for understanding flares are highlighted. Finally, the impact of emerging computational and observational tools for understanding flare dynamics are discussed.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Abstract We report observations of direct evidence of energetic protons being accelerated above ∼400 keV within the reconnection exhaust of a heliospheric current sheet (HCS) crossing by NASA’s Parker Solar Probe (PSP) at a distance of ∼16.25 solar radii (Rs) from the Sun. Inside the exhaust, both the reconnection-generated plasma jet and the accelerated protons up to ∼400 keV propagated toward the Sun, unambiguously establishing their origin from HCS reconnection sites located antisunward of PSP. Within the core of the exhaust, PSP detected stably trapped energetic protons up to ∼400 keV, which is ≈1000 times greater than the available magnetic energy per particle. The differential energy spectrum of the accelerated protons behaved as a pure power law with spectral index of ∼−5. Supporting simulations using thekglobalmodel suggest that the trapping and acceleration of protons up to ∼400 keV in the reconnection exhaust are likely facilitated by merging magnetic islands with a guide field between ∼0.2 and 0.3 of the reconnecting magnetic field, consistent with the observations. These new results, enabled by PSP’s proximity to the Sun, demonstrate that magnetic reconnection in the HCS is a significant new source of energetic particles in the near-Sun solar wind. Our findings of in situ particle acceleration via magnetic reconnection at the HCS provide valuable insights into this fundamental process, which frequently converts the large magnetic field energy density in the near-Sun plasma environment and may be responsible for heating the Sun’s atmosphere, accelerating the solar wind, and energizing charged particles to extremely high energies in solar flares.more » « lessFree, publicly-accessible full text available May 29, 2026
- 
            Context.On 13 March 2023, when the Parker Solar Probe spacecraft (S/C) was situated on the far side of the Sun as seen from Earth, a large solar eruption took place, which created a strong solar energetic particle (SEP) event observed by multiple S/C all around the Sun. The energetic event was observed at six well-separated locations in the heliosphere, provided by the Parker Solar Probe, Solar Orbiter, BepiColombo, STEREO A, near-Earth S/C, and MAVEN at Mars. Clear signatures of an in situ shock crossing and a related energetic storm particle (ESP) event were observed at all inner-heliospheric S/C, suggesting that the interplanetary coronal mass ejection (CME)-driven shock extended all around the Sun. However, the solar event was accompanied by a series of pre-event CMEs. Aims.We aim to characterize this extreme widespread SEP event and to provide an explanation for the unusual observation of a circumsolar interplanetary shock and a corresponding circumsolar ESP event. Methods.We analyzed data from seven space missions, namely Parker Solar Probe, Solar Orbiter, BepiColombo, STEREO A, SOHO, Wind, and MAVEN, to characterize the solar eruption at the Sun, the energetic particle event, and the interplanetary context at each observer location as well as the magnetic connectivity of each observer to the Sun. We then employed magnetohydrodynamic simulations of the solar wind in which we injected various CMEs that were launched before as well as contemporaneously with the solar eruption under study. In particular, we tested two different scenarios that could have produced the observed global ESP event: (1) a single circumsolar blast-wave-like shock launched by the associated solar eruption, and (2) the combination of multiple CMEs driving shocks into different directions. Results.By comparing the simulations of the two scenarios with observations, we find that both settings are able to explain the observations. However, the blast-wave scenario performs slightly better in terms of the predicted shock arrival times at the various observers. Conclusions.Our work demonstrates that a circumsolar ESP event, driven by a single solar eruption into the inner heliosphere, is a realistic scenario.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Abstract The anisotropy of energetic particles provides essential information to help resolve the underlying fundamental physics of their spatial distributions, injection, acceleration, and transport processes. In this work, we report an energetic ion enhancement that is characterized by very large and long-lasting anisotropies observed by STEREO A and Solar Orbiter, which are nearly aligned along the same nominal Parker spiral. This ion enhancement appears at the rising phase of a widespread solar energetic particle event that was associated with the farside coronal mass ejection on 2022 February 15. According to our analysis, the long-lasting anisotropy resulted from the continuous injection of energetic ions from a well-connected particle source located beyond the STEREO A’s orbit. Solar Orbiter also observed an interval of very large anisotropy dominated exclusively by sunward streaming ions but with the additional implication that it detected the very early phase of ion injections onto magnetic field lines that newly connected to the particle source, which is likely the first reported event of this kind. These results further illustrate how energetic particle anisotropy information, in particular from multiple observer locations, can be used to disentangle the sources and transport processes of energetic ions, even when their heliospheric context is not simple.more » « less
- 
            Abstract On 2022 February 15–16, multiple spacecraft measured one of the most intense solar energetic particle (SEP) events observed so far in Solar Cycle 25. This study provides an overview of interesting observations made by multiple spacecraft during this event. Parker Solar Probe (PSP) and BepiColombo were close to each other at 0.34–0.37 au (a radial separation of ∼0.03 au) as they were impacted by the flank of the associated coronal mass ejection (CME). At about 100° in the retrograde direction and 1.5 au away from the Sun, the radiation detector on board the Curiosity surface rover observed the largest ground-level enhancement on Mars since surface measurements began. At intermediate distances (0.7–1.0 au), the presence of stream interaction regions (SIRs) during the SEP arrival time provides additional complexities regarding the analysis of the distinct contributions of CME-driven versus SIR-driven events in observations by spacecraft such as Solar Orbiter and STEREO-A, and by near-Earth spacecraft like ACE, SOHO, and WIND. The proximity of PSP and BepiColombo also enables us to directly compare their measurements and perform cross-calibration for the energetic particle instruments on board the two spacecraft. Our analysis indicates that energetic proton measurements from BepiColombo and PSP are in reasonable agreement with each other to within a factor of ∼1.35. Finally, this study introduces the various ongoing efforts that will collectively improve our understanding of this impactful, widespread SEP event.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
